

LAWRENCE

N AT I O N A L

LABORATORY

LIVERMORE

 UCRL-JC-154844

General MoM Solutions for
Large Arrays

B. Fasenfest, F. Capolino, D. R. Wilton, D. R. Jackson,
N. Champagne

International Conference on Electromagnetics in Advanced

July 22, 2003

Approved for public release; further dissemination unlimited

Applications, Torino, Italy, September 8-12, 2003

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the University
of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

General MoM Solutions for Large Arrays
B. Fasenfest1, F. Capolino2, D.R. Wilton1, D.R. Jackson1, and N. Champagne3

1 Dept. of Electrical and Computer Engr., University of Houston, Houston, TX 77204-4005, USA
2 Dip. di Ingegneria dell�Informazione, University of Siena, Via Roma 56, 53100 Siena, Italy
3 Lawrence Livermore National Lab., Livermore, CA 94550, USA

Abstract −−−− An effective MoM solution scheme is developed for
large arrays using a modification of the AIM (Adaptive
Integral Method) method. The method permits the analysis of
arrays with arbitrary contours and nonplanar elements. Both
fill and solve times within the MoM method are improved
with respect to more standard MoM solvers.

1 INTRODUCTION

This paper focuses on a numerical procedure that
addresses the difficulties of dealing with large, finite
arrays while preserving the generality and robustness
of full-wave methods. We present a fast method
based on approximating interactions between
sufficiently separated array elements via a relatively
coarse interpolation of the Green�s function on a
uniform grid commensurate with the array�s
periodicity. The interaction between the basis and
testing functions is reduced to a three-stage process.
The first stage is a projection of standard (e.g.,
RWG) subdomain bases onto a set of interpolation
functions that interpolate the Green�s function on the
array face. This projection, which is used in a
matrix/vector product for each array cell in an
iterative solution process, need only be carried out
once for a single cell and results in a low-rank matrix.
An intermediate stage matrix/vector product
computation involving the uniformly sampled
Green�s function is of convolutional form in the
lateral (transverse) directions so that a 2D FFT may
be used. The final stage is a third matrix/vector
product computation involving a matrix resulting
from projecting testing functions onto the Green�s
function interpolation functions; the low-rank matrix
is either identical to (using Galerkin�s method) or
similar to that for the bases projection.

The general scheme is that of the adaptive integral
method (AIM) developed in [1], with a significant
difference being the approximation of the Green�s
function using Lagrange interpolating polynomials.
The MoM scheme presented is suitable for
incorporating the solver acceleration method
presented recently in [2] that uses a physically-based
preconditioner to accelerate the iterative solution
process.

2 THE FAIM METHOD

The FAIM (faster AIM) method discussed below is
applicable to arrays with arbitrary boundaries. The
array boundary is defined by the vertices of a closed,
piecewise linear curve, which in turn defines an array
mask that indicates where array elements are present.
The mask is generated using a winding number test to
determine if an element is within the array boundary or
not. Typical array boundaries are represented in Fig. 1.
Use of the mask also simplifies the specification of
missing elements when their effects are to be
investigated. The displacement between the p'th and
pth array cells is 1 1 1 2 2 2() ()p p p p′ ′− + −s s , where s1 and
s2 are two arbitrary lattice vectors lying in the xy plane.
Bold letters denote vectors or double indexes, and unit
vectors are denoted by a caret. The vector �r ρ zz= + ,
with � �x y= +ρ x y , is in cell 1 2(,)p p=p and

�z′ ′ ′= +r ρ z is in cell 1 2(,)p p′ ′ ′=p . The array elements
within cells p and p´ are discretized, for instance, using
standard RWG basis functions, with primed and
unprimed indices denoting source and testing
functions, respectively (Fig. 2).

2.1 Array and Matrix Masks and the FFT

Domain

The array mask indicates the presence or absence of an
array element at each cell location within an arbitrary
contour. From it, a matrix mask is synthesized that
indicates permissible interactions between the elements
present in the array. The matrix mask for a hexagonal
array, for example, is shown in Fig. 3; the matrix
tabulates all possible interactions between elements in
the array mask in terms of their separation indices from
a central array element. Not only does the matrix mask

Array Masks

x
y

Figure 1: The array mask describes the location of
array elements within a rectangular bounding box.

determine what values of the Green�s function are
needed for interpolation, but also facilitates the storage
of block-Toeplitz matrices of rank N N× , with
N denoting the total number of degrees of freedom per
array element. Also shown in the figure is the FFT
domain obtained by finding the bounding box of the
matrix mask and padding the number of cells to the
next power of two in each lattice dimension.

2.2 EFIE Formulation

Though a mixed potential representation is actually
used, the EFIE integral equation for the array is written
symbolically in the compact form

inc
tan(, ,) () ,J r E

S

z z dS′ ′ ′ ′− ⋅ = −∫G ρ ρρ ρρ ρρ ρ (1)

where the integration domain S represents all
conducting elements over the entire finite array. This
integral equation has the discretized form

1

(); (, ,); () , ,
N

m n n m
n

z z V m′ ′

′ =

′ ′ ′− < − > Ι = ∀∑∑ p p p p

p
r r pΛ ρ ρ ΛΛ ρ ρ ΛΛ ρ ρ ΛΛ ρ ρ ΛG

where n

′pΛΛΛΛ and m
pΛΛΛΛ are RWG basis and testing

functions, respectively. In supermatrix form, the
discretized EFIE may be written symbolically as

,mn n mZ V′ ′     Ι =     
pp p p (2)

with

(); (, ,); ()mn m nZ z z′ ′′ ′ ′= − < − >pp p pr rΛ ρ ρ ΛΛ ρ ρ ΛΛ ρ ρ ΛΛ ρ ρ ΛG .

2.2 Green�s Function Interpolation (FAIM Filling
Acceleration)

For elements separated by at least one cell, we
approximate the Green�s function (, ,)z z′ ′−G ρ ρρ ρρ ρρ ρ via
Lagrange polynomial interpolation in a separable form
as

, , '

, , ,

(, ,)

() () () () ,j j j j

j j

z z

L L z L L z′ ′ ′

′ ′

′ ′− ≅

′ ′∑ i i-i i

i i

G

G

ρ ρρ ρρ ρρ ρ

ρ ρρ ρρ ρρ ρ (3)

where the indices on , ,j j′ ′i-iG denote sampled values of
the coordinates and

() () () ()
, , (, ,)j j
j j z z′ ′

′ ′ ′ ′≡ −i i
i-iG " G ρ ρρ ρρ ρρ ρ (4)

and () ()jL L zi ρ are Lagrange interpolation polynomials
defined on the interpolation points within a cell (see
Fig. 4). It is significant that in the evaluation of the
interaction mnZ ′pp between two array cells p and ′p , the
interpolation scheme generally requires many fewer
Green�s function evaluations per cell than in the usual
case where subdomain interactions are evaluated
directly, or even than the usual AIM approach requires.
This becomes especially true as the complexity of the
array elements increases. Furthermore, in the case of
layered media, the Green�s function itself is evaluated
by interpolating constituent terms that are tabulated
along a single radial line.

2.4 FAIM Formulation
In the FAIM formulation, the m and n elements in the
matrix block pp

mnZ ′ corresponding to array cell p and
source cell p′ may be represented as

'
, ,

, , ,

() (), ()

(), () ()mn mn

j j j n

m j
j j

Z Z L L

L L z

z′ ′

′ ′ ′ ′

′ ′

≈ ≡ −

′ ′ ′⋅ ⋅ < >

< >⋅∑pp pp

p
i-i i

p
i

i i

r

r! ΛΛΛΛ

ρ Λρ Λρ Λρ Λ

ρρρρ

G

 (5)

Source
function

Testing function

x
y

m
pΛΛΛΛ

n
′pΛΛΛΛ

1 2(,)p p′ ′ ′=p

1 2(,)p p=p

2s

1s

Figure 2: Array cell index definitions and arbitrary
skew lattice vectors.

FFT Domain

Matrix Mask

x
y

Figure 3: Matrix mask for a hexagonal array
obtained by translating the array mask, and the FFT
domain for a rectangular array lattice obtained by
padding to the next power of 2 the number of array
cells (blocks) of the matrix mask in both x and y
directions.

and the corresponding matrix equation would be

' 1

, .
N

mn n m
n

Z V m′ ′

=

⋅ Ι = ∀∑∑ pp p p

p
p! (6)

Two important facts that significantly speed the
computation are the following:

1)
1 2 3

'
r r r N

njL L
× × ×

′
′

p
i , ΛΛΛΛ vanishes unless

 1 2

1 2

,
i i
r r

 ′ ′   ′  ′≡ =             
pi

r
 where Floor ()x x≡   is the

greatest integer less than or equal to its argument.
The same holds for

1 2 3r r r N
mjL L

× × ×

p
i ,,,, ΛΛΛΛ .

2)
1 2 3

'
r r r N

njL L
× × ×

′
′

p
i , ΛΛΛΛ and

1 2 3r r r N
mjL L

× × ×

p
i ,,,, ΛΛΛΛ are

identical for every array element p′ or p, so they
need only be computed once. Furthermore, if
Galerkin�s method is used (m n

′p pΛ ΛΛ ΛΛ ΛΛ Λ====), then the
quantities are equal.

2.4 FAIM Solution Acceleration. Fast Computation
of Matrix-Vector Products

The form (6) of the EFIE is not sufficiently accurate
if the cell (index) separation is not sufficiently large

since a low order interpolation of the Green�s
function is not accurate near the source point. To
avoid this inaccuracy while minimizing the number of
interpolating polynomials within each cell, the self
block coupling and that between neighboring blocks
is found by standard MoM, i.e., using standard
integration rules and Green�s function evaluation for
the interaction between each RWG basis and test
function. The original discretized EFIE is thus
rewritten as

,mn n m n n mZ Z V′ ′ ′ ′        ∆ Ι + Ι =        
pp p pp p p! (7)

where the block Toeplitz difference matrix

pp pp pp
mn mn mnZ Z Z′ ′ ′∆ = − ! is taken as zero for elements

satisfying p p c′− ≥ and is hence sparse. We also
note that generally , , 'j j′ = ∞i-iG when , j j′ ′= =i i , but

this infinite value can be replaced by a finite value and
(6) remains valid. To evaluate the matrix/vector
product, we note that the product pp p

mn nZ ′ ′   ∆ Ι    can be

performed quickly since pp
mnZ ′∆ is sparse, whereas

pp p
mn nZ ′ ′   Ι  
! is of convolutional form and can be

evaluated quickly using a 2D FFT as follows:

(), ,
1

, , , '

,

, ,

mn n m j

N

j j j n n
n

j j

Z L L

L L

′ ′

′ ′
′ ′

′ =

′

   Ι = − < >⋅  

  
  ⋅ • < >Ι

    

∑

∑∑

pp p p
i i i

p p
i i i i

p

i i

! ΛΛΛΛ

ΛΛΛΛ

 G

-1MASK FFT

FFT FFT

 (8)

where the double bars on a quantity indicate that its
length is extended so as to obtain a circular
convolutional form and then zero-padded to obtain
vectors of length 2k for applying the fast Fourier
transform (FFT), -1FFT denotes the inverse fast
Fourier transform, and iMASK is the array mask
restricting the result to array elements within the array
boundary.

3 NUMERICAL RESULTS

To assess the interpolation accuracy, the method is
tested on an array of 5x5 dipoles in free space, each
discretized using 24 triangles and RWG basis
functions. The dipoles are illuminated by a plane
wave with E field along the dipole axis and at a
frequency f = 380MHz. The dipoles have length
l = 0.494λ and width w = 0.025λ. The average
percent error in the current at the center of each
dipole of the array is plotted versus the Lagrange
polynomial interpolation order in Fig. 5. The error at

1r 3r

 th interpolation ′i

th cell

m th basis

n th basis

 th cell

2r

 th interpolation i

p′

p

x
y

Figure 4: The periodic grid on which the Green�s
function is evaluated and sampled is shown
superimposed on the array cells. Within an array
cell, the Green�s function is evaluated at 1 2 3r r r× ×
points.

each element is calculated relative to a reference
solution using an element-by element MoM scheme,
and then averaged over all the elements. The
computation time per iteration taken by the BiCGstab
iterative method increases with interpolation order
since more terms are involved in each FFT matrix-
vector multiplication.

The FAIM method has been tested on a 20×20 array
of printed dipoles on a grounded dielectric substrate.
The geometrical configuration is that of [3], where it
was shown that the infinite array has a scan blindness
near 45 degrees. However, we note in Fig. 6 that
while the reflection coefficient of the center element
in the finite array is nearly the same as that of the
infinite array, the average reflection coefficient of the
finite array is somewhat lower near the scan
blindness angle due to edge effects.

The finite array was also treated using an �exact�
MoM calculation utilizing an accelerated but exact
fill. The average error in currents between the FAIM
and MoM calculation was less than a 0.1%, while the
FAIM calculation ran about 7 times faster.

4 CONCLUSIONS

The FAIM method is developed for arrays with
arbitrary geometries and is summarized by the
following steps. An array mask function is used to
determine the arbitrary array contour and to specify
the domain for which the Green�s function is
interpolated using Lagrange polynomials to
accelerate the matrix fill; an FFT is then used to
accelerate the matrix-vector products in an iterative
solver. Preliminary results show the effectiveness of
the method for large array problems.

The name FAIM (faster AIM) arises from the fact
that the method is similar to the AIM method, but
with the difference that Lagrange interpolating
polynomials are used to approximate the Green�s
function using relatively fewer interpolation points
per cell. Further, the bases are projected onto the
interpolation polynomials in contrast to determining
their multipole moments relative to the interpolation
grid. Preliminary numerical simulations suggest that
fewer integration points are required to keep the same
accuracy compared to the original AIM method.

Acknowledgments

This work was performed under the auspices of the
U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory
under Contract W-7405-Eng-48.

References

[1] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz,

"AIM: Adaptive integral method for solving large
scale electromagnetic Scattering and Radiation
Problems," Radio Science, v. 31, pp. 1225-1251,
1996.

[2] F. Capolino, D. R. Wilton, and D. R. Jackson,
�Physical Preconditioning for Numerical
Modeling of Large Periodic Arrays�, XXVIIth
URSI General Assembly, Maastricht, The
Netherlands, 17-24 Aug. 2002.

[3] D. Pozar, D. Schaubert, �Scan Blindness in
Infinite Phased Arrays of Printed Dipoles�, IEEE
Transactions on Antennas and Propagation, v.
AP-32, pp.602-610, June 1984.

Time per Iteration (ms)

0

40

80

120

160

2 3 4 5 6
Interpolation Order

Average % Error

0.01

0.1

1

10

100

2 3 4 5 6 7
Interpolation Order

Figure 5: Average error in dipole currents and time
per iteration vs. interpolation order.

Magnitude Reflection Coefficient

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90
Scan Angle (Theta)

Center

Average

Infinite

Figure 6: Magnitude of dipole reflection coefficient
for infinite array compared to the average and
center element values for a 20 × 20 array.

